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Abstract--Shear stress in non-cohesive solid-fluid mixture flow is due to impact among solid particles, 
viscous interaction between the solid and the fluid and turbulence in the interstitial fluid. Bagnold, based 
on analogy with the kinetic theory of gas, derived an equation for the shear stress due to the impact of 
solid particles. It includes a coefficient which should change with different coefficients of restitution of solid 
materials. However, Bagnold's equation has difficulties in correlating with experiments by other 
investigators. A new equation for the viscous interaction between solid and fluid is presented here. The 
new equation and the modified impact coefficient compare well with several sets of experiments by different 
investigators covering a wide range of physical variables of the mixture flow. 
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1. I N T R O D U C T I O N  

Solid-fluid mixture flow is usually studied along two distinct modes of  transport,  i.e. suspension 
and contact t ransport  (also known as bed load). Research on suspension transport  was conducted 
by Rouse (1937), Einstein & Chien (1955) and Ippen (1971) to name a few. Contact  transport  was 
studied by Einstein (1942), Bagnold (1954, 1973), Takahashi  (1980), Shibata & Mei (1986) and 
Julien & Lan (1991), among others. Shen & Ackermann (1982) and Savage & Sayed (1984) derived 
constitutive equations for solid-fluid mixture flows. These equations are complicated and are not 
easy to use. Bagnold (1954, 1973) derived an equation for the shear stress due to the impact of  
solid particles and conducted extensive tests in a Couette apparatus.  Bagnold's work is now 
considered classic in high concentration granular flow research. 

Shear stress in solid-fluid flow should include: (1) cohesion among solid particles; (2) 
impact among solid particles zi; (3) viscous interaction between the solid particles and the 
surrounding fluid zv; and (4) turbulence stress in the interstitial fluid zf. The total shear stress is 
the sum of these four types of  stresses. Cohesive stress is due to electrochemical interaction 
of  molecules or mechanical entanglement among solids in solutions containing fine clay, long- 
chain polymers, slender rods or fibrillous materials. This paper deals with non-cohesive solid 
materials. 

2. P A R T I C L E  I M P A C T  S H E A R  STRESS zi 

Bagnold (1954), based on the frequency and the momentum exchange of a sphere during 
collisions and analogy with the kinetic theory of  gas, derived the following equation for the impact 
shear stress: ( duy, 

~'i = aips 2D dy  ] [11 

in which ai is the impact coefficient. Bagnold determined for his mixture a i=0.0128.  
The momentum exchange during an impact is a function of  the coefficient of  restitution for 
the solid particle. Thus, the impact coefficient will vary with the solid material. Ps is the 
density of  the spherical particle, D is the diameter of  the sphere, du /dy  is the velocity gradient 
of  the mixture and 2 is the ratio of  sphere diameter D to the mean gap between them S, or 2 = 
D/S. 
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Assuming the spheres are dispersed uniformly in the mixture, as shown in figure 1, the distance 
between the centers of  neighboring spheres is D + S. Defining a diameter multiplier b, such that 
b D =  D + S, then 

1 
b = l + - .  [2] 

2 

The volumetric concentration of  solid C can be expressed in terms of the multiplier b: 

Co Co 

where Co is the theoretical maximum concentration of solid spheres when S = 0. For uniform 
spheres, the theoretical maximum concentration (cannon ball piling) in an infinite domain is 
Co = 0.74. In the finite volume of  the test apparatus, Co should be less. Bagnold used Co = 0.72 on 
his data from C = 0.135 to 0.555. Since the difference between Co = 0.74 and 0.72 is not large, 
Co = 0.72 is used in this analysis to avoid changing Bagnold's data. Equation [3] can be rewritten 
a s  

1 
2 = [4] 

Figure 2 reproduces the result of Bagnold (1954, figure 5) on measured granular shear stress 
"t" v -Jr- "t i VS [l].  The grains were spheres of  a nearly 50% mixture of paraffin wax and lead stearate 
such that their density was equal to water, the interstitial fluid. The spheres had a uniform diameter 
of  1.32mm. The sum of  impact and viscous stresses (T,+ z,) was obtained by subtracting the 
apparatus friction and shear in the fluid Tf, estimated as the linear porosity S/(D + S) = 1/(1 + 2) 
times the plain-fluid shear, from the total stress measured. 

As shown in figure 2, the data points for C from 0.135 to 0.555 (2 = 1.3 to 11) gather around 
a single curved line. When the concentration is greater than 0.555 (2 = 11), the measured shear 
stress is higher than the line. This increase in stress for C = 0.623 (2 = 20) is attributed to the mech- 
anical jamming or locking of  particles at such high concentration in the confined test apparatus. 

Impacts among solid grains also generate normal stresses (pressure). Bagnold (1954) derived the 
impact pressure P~ as 

e ,  = , d y /  [5] 

where the impact pressure coefficient ap = 0.04. Viscous effects do not generate pressure. According 
to [5], the impact pressure is about 3.1 times the impact shear stress. For a surge of debris flow 
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Figure I. Particle arrangement.  
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Figure 2. Measured shear stresses vs [i] (Bagnold 1954). 
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Figure 3. Rotation of spheres and the velocity gradient in 
the interstitial fluid. 
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Figure 4. Comparison of measured shear stresses for two 
different velocities at C = 0.555 (Bagnold 1954), with [l]. 

down a slope, larger particles generate much larger normal stress which pushes them up to the top 
surface. The faster velocity at the surface then collects the larger particles at the leading edge of 
the debris flow, as is often observed in the field. 

3. VISCOUS INTERACTIVE STRESS ON PARTICLES % 

A new equation for the viscous interaction between solid and fluid has been developed. In a 
mixture flow, solid particles tend to move at the minimum relative velocity with respect to the 
surrounding fluid, meaning a sphere would have to rotate at the velocity gradient of the mixture, 
du/dy, or at least in proportion to it. The surface velocity of a rotating sphere is Vs = (D/2) du/dy, 
as shown in figure 3. The surface velocity of neighboring spheres is equal but opposite in direction. 
The total surface velocity difference across the gap S is Vs = D du/dy. Therefore, the average 
velocity gradient in the interstitial fluid should be proportional to (du/dy)r~ (D/S)du/dy = 2 
du/dy. 

The number of spherical grains per unit area in the horizontal plane is l/bZD 2. The surface area 
of  each sphere facing the lower layer is reD2~2. The surface area of spheres per unit horizontal area 
of the mixture is (1/bED2)(TtD2/2) = zr/(2b 2) = (~/2)22/(1 + 2) 2 using [2]. The viscous shear stress is 
proportional to the factor of dynamic viscosity of the fluid #r, the average velocity gradient of the 
interstitial fluid 2 du/dy, and the surface area of spheres per unit horizontal area of the mixture. 
Therefore, 

2 3 du 2 3 du 
zv '~ #r~ (1 + 2) 2 dy = av/zf(] + 2) 2 d y '  [6] 

where a, is a constant called the viscous coefficient. Equation [6] is different from Bagnold's viscous 
shear equation zv = 2.25 lZr~3/Edu/dy. Combining [6] and [l], 

Zv+Zi=avuf(1 + 2 )  ~ dy +aiPs\ dy] " [7] 

The coefficients av and ai can be determined from experimental results. For high solid concen- 
trations, the interstitial fluid can remain laminar even at high velocities. The solids damp turbulence 
in the mixture flow. When turbulence sets in, the shear stress should be proportional to (du/dy) 2, 
the same as the impact stress. 

In Bagnold's (1954) tests at a concentration of 0.555, in addition to water, glycerol and alcohol 
were added to make the dynamic viscosity 7 times that of water. Figure 4 reproduces the result 
shown in Bagnold's paper (1954, figure 6). It is clear that viscous shear stress is very important 
for lower shear rates. 
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Using the least square method on Bagnold's data at concentration C = 0.555 for two widely 
different viscosities of  the fluid, the two coefficients in [7] were determined: 

viscous coefficient av=8.1 [8] 
and 

impact coefficient a~ = 0.009. [9] 

Figure 5 demonstrates the close agreement between the measured shear stresses by Bagnold and 
[7] for different fluid viscosities. The viscous interaction is a surface phenomenon, there is no reason 
for the viscous coefficient (av = 8.1) to change for different solids. It should remain constant while 
the impact coefficient ai changes with different coefficients of  restitution of  solid particle. 

Bagnold's data for concentrations from 0.135 to 0.623 is plotted in figure 6. The data points for 
concentrations of  0.135-0.555 (2 = 1.3 to 11) form a single straight line which [7] predicts well. 
When C > 0.555, the measured shear stresses are higher than predicted by [7]. This increase of 
stresses for C = 0.623 (2 = 20) is attributed to the mechanical jamming of particles at such high 
concentrations in the confined test apparatus, as mentioned before. 

The viscous shear stress of  [6] is based on the tangential components of  the velocity at the nearest 
points of  neighboring spinning spheres. This model predicts a velocity gradient in the interstitial 
fluid of  (du/dy)f ~ 2 du/dy. One of  the reviewers suggests another approach: in a concentrated 
system, there is a component of  relative velocity between the center of neighboring spheres in the 
y-direction and intense shearing occurs in the squeeze fluid film between two particles. The relative 
velocity between neighboring centers is AU = (S + D)du /dy ,  figure 3. The gap between two 
particles is S. The velocity gradient in the gap is (du/dy)f ~ A U / S  = (1 + 2) du/dy. When multiplied 
by #r and the surface area of  spheres per unit area of  the mixture (n/2)22/(1 + 2)2, the viscous shear 
stress is )2 du 

' - -  . [6a] rv = av#f I + 2 dy 

Using the least-square method on the same data, the viscous coefficient is determined as av = 7.4, 
while the impact coefficient remains the same at a~ = 0.009. 

For  concentrations from C = 0.48 to 0.623 ()` = 7 to 20), the difference between [6] and [6a] is 
small, less than 5%. In low concentrations, the particles are known to be spinning. For  C < 0.48, 
[6] agrees with the data better than [6a]. Equation [6] will be used in this paper. 

Savage & McKeown (1983) and Savage & Sayed (1984) conducted shear tests on different solid 
materials and fluids. Savage & McKeown (1983) used neutrally buoyant polystyrene beads in salt 
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Figure 5. Comparison of measured shear stresses for two 
different viscosities at C = 0.555 (Bagnold 1954) with [7]. 
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Table 1. Summary  of  experiments and impact coefficients (av = 8.1, Co = 0.72) 
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Experiment 

Mean Sphere 
Fluid diameter Solid diameter to 

Material of  Solid density viscosity spheres volumetric gap ratio Impact 
spheres and Ps Ps #f D concentration D coefficient 

fluid (kg/m 3) pf (NS/m 2) (mm) C 2 S ai 

Bagnold 
(1954) 

Savage 
& McKeown 
(1983) 

Savage & Sayed- 
(1984) 

Wax and lead 1000 1.0 I x 10 -~ 
stearate 
mixture in 
water 1000 1.0 7 x 10 -3 

Polystyrene 1029 i.0 1.1 x 10 -3 
in salt water 

Glass 2970 2400 1.8 x 10 -5 
in air 

Polystyrene 1095 900 1.8 x 10 -5 
in air 

i.32 0.135-0.555 1.3-11 0.009 

1.32 0.555 11 0.009 

0.97 0.43 5.3 0.026 
0.53 9.3 0.026 

1.24 0.43 5.3 0.025 
0.53 9.3 0.026 

Ave. 0.026 

1.8 0.48 6.8 0.029 
0.49 7.4 0.030 
0.51 8.1 0.028 

Ave. 0.029 
1.0 0.46 6.2 0.039 

0.48 7.0 0.040 
0.50 7.9 0.040 

1.32 0.44 5.7 0.043 
0.46 6.2 0.046 

Ave. 0.042 

water. They subtracted the full plain fluid calibration stress zf from the total measured stress to 
yield particle impact and viscous shear stress. Bagnold subtracted a partial plain fluid stress 
zr/(1 + 2) by multiplying a factor of linear porosity, which is defined as S/(S + D) = 1/(1 + 2), by 
zr. When S = 0 and 2 = DIS = oo, the mixture is a rigid structure and the shear stress in the 
interstitial fluid should vanish. Savage & McKeown (1983) mentioned that to their data 
"cf-"~f/(1-t-,~) = "t'f~,/(1 "1-~,) should be added in order to compare with Bagnold's data. This 
adjustment has been made for comparison in this paper. 

Savage & Sayed (1984) conducted shear tests with polystyrene and glass beads in air. When air 
is the interstitial fluid, due to the small dynamic viscosity #r of air compared to water, the plain 
fluid shear stress is negligible and the adjustment for fluid stress is no longer needed. 

Table 1 summarizes these three sets of experiments and the impact coefficients ai determined from 
the data. The viscous coefficient av is constant at 8.1. As shown in table 1, the impact coefficient 
ai for the wax and lead stearate mixture in water is 0.009, for polystyrene in salt water it is 0.026, 
for glass in air it is 0.029 and for polystyrene in air it is 0.042. Using these ai values in comparison 
of measured data and predictions by [7] is shown in figure 7. 

For clarity, only 2 = 11 of Bagnold's data is shown in figure 7. Bagnold's data for 2 = 1.3 to 
11 (C = 0.135 to 0.555) form a single line as predicted by [7], figure 6. These three sets of data in 
figure 7 cover a wide range of variables: concentration from 0.135 to 0.555, sphere diameter from 
0.97 to 1.8mm, solid density from 1000 to 2970kg/m 3 and viscosity from 1.8 x 10 -5 to 
7 x 10 -3 NS/m 2. The solid materials were wax, polystyrene and glass beads. Equation [7] predicts 
the data well. Bagnold's equation has difficulties correlating data by Savage & McKeown (1983) 
and Savage & Sayed (1984). 

The momentum exchange of a particle at impact is affected by the coefficient of restitution of 
the solid. Bagnold's sphere was made of wax and lead stearate mixture which has a low coefficient 
of restitution, hence a low a~ = 0.009. For a material having a high coefficient of restitution, such 
as Savage & McKeown's polystyrene beads in salt water, a~ increases to 0.026. The density and 
viscosity of the fluid also have influence. Spheres are easier to accelerate in low density air because 
the effect of added mass on the drag force is much smaller than in water. The motion of spheres 
should be livelier, momentum exchange and ai should be larger in air than in heavier water. For 
Savage & Sayed's polystyrene beads in air, the impact coefficient is increased to a~ = 0.042 from 
0.026 in water. 

Savage & Sayed's (1984) tested glass beads in air. Due to many collisions, the surface of the brittle 
glass beads became pitted and roughened by many fractures. The fractured glass beads reduced 
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Figure 7. Comparison o f  several sets o f  measured shear stresses with [7]. 

the coefficient of restitution. This explains the decrease of a~ to 0.029 for glass beads in air when 
compared with smooth polystyrene beads in air at 0.042. 

Even at the highest velocity gradient in Bagnold's measurements (du/dy = 245 s-'), the shearing 
motion is still not fully dominated by inertia with the power of du/dy < 2. The viscous shear stress 
is estimated about 30% of the measured stress. Bagnold (1954) indicated that a~ = 0.0128, which 
includes viscous shear. When the 30% viscous stress is subtracted, the impact coefficient is reduced 
to 0.009. 

For Bagnold (1954) and Savage & McKeown's (1983) data on spheres in water, [7] is applicable 
up to C = 0.555. Above that the jamming of particles in the confined test apparatus causes the stress 
to increase higher than predicted in [7]. For spheres in air in a confined apparatus, the upper 
limiting concentration for [7] is about 0.53. The data which showed mechanical jamming with 
scattering is not included in figure 7. 

4. T U R B U L E N T  SHEAR STRESS OF THE FLUID zf 

At high concentrations, the turbulent shear stress in the interstitial fluid is usually small when 
compared with the sum of viscous and impact stresses. However, for low concentrations, both 
viscous and impact stresses are greatly reduced. The turbulence stress in the interstitial fluid 
becomes an important term. 

The turbulent shear stress in the interstitial fluid can be represented by the Reynold's stress 
- p f u ' v ' ,  in which u' and v' are turbulent velocity components. The amount of shearing action of 
the fluid in the mixture is reduced by the presence of a solid phase. A reasonable reduction factor 
is the linear porosity S / (S  + D) = 1/(1 + 2) used by Bagnold. The turbulent shear stress in the fluid 
can be expressed as pru'v' 

+r = (1 + 2)" [I0] 

Based on measurements in solid-fluid mixtures in conduits, the velocity profile is still pro- 
portional to the logarithm of the distance from the boundary, the same trend as for the plain fluid 
(Daily & Hardison 1964; Roberts et al. 1967; Mih & Parker 1967). This indicates that the 
Karman-Prandtl  approach for turbulent fluid is applicable in the mixture. Therefore, 

lu ' l~ l -v ' l~ l  du 
du 

d y = k y -d-fy ' I1 l] 
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where I is the mixing length, k = 0.4 is Karman's constant for pure fluid, y is the distance away 
from the wall and du/dy is the velocity gradient at a point. Substituting [11] into [10]: 

duy 1 [12] 
zr=Pr 0.4Ydy] I + 2 "  

Equation [12] is for conduct and channel flows. For a cylindrical Couette flow, the shear is nearly 
constant across the gap of the Couette apparatus, [12] can be rewritten as 

%=afPr( h du'~2dy,,I 1+2'1 [131 

in which af is the fluid coefficient and h is the half gap; the plane of symmetry for the velocity profile 
in a Couette flow is at mid-gap. Based on plain fluid Couette tests by Bagnold (1954) and Savage 
& McKeown (1983), the average fluid coefficient is af = 0.0025. Adding [7] and [l 3], the equation 
for shear stress in a non-cohesive solid-fluid mixture Couette flow is 

23 du (2DdU'~ z (h dU'] z 1 [14] 
z=8"l#f(l+2)-~2dy+aiPs\ dyl  +0.0025pf~ dyJ 1 + 2 '  

where aa is a function of solid materials and fluids as listed in table 1. For conduit and channel 
flows, the last term of [14], zf, should be replaced by [12]. 

5. CONCLUSION 

This analysis provides a new equation, [7], for the viscous intraction shear stress in solid-fluid 
mixture flow which is supported by several sets of experiments covering a wide range of physical 
variables. Previous analyses do not accurately correlate with the experiments. Together with an 
equation for turbulence in the interstitial fluid, [14] is a new shear equation for non-cohesive 
mixture flow. 

REFERENCES 

BAGNOLD, R. A. 1954 Experiments on a gravity-free dispersion of large solid spheres in a 
Newtonian fluid under shear. Proc. R. Soc. Lond. A225, 49-63. 

BAGNOLD, R. A. 1973 The nature of saltation and of bed-load transport in water. Proc. R. Soc. 
Lond. A332, 473-504. 

DAILY, J. W. & HARDISON, R. W. 1964 Rigid particle suspensions in turbulent shear flow: 
measurements. Technical Report 67, Hydrodynamics Lab., MIT, Cambridge, MA. 

EINSTEIN, H. A. 1942 Formula for the transport of bed load. Trans. Am. Soc. Cir. Engrs 107, 
561-573. 

EINSTEIN, H. A. & CHIEN, N. 1955 Effect of heavy sediment concentration near the bed on velocity 
and sediment distribution. Engineering Research, Univ. of California, Berkley, CA. 

IPPEN, A. T. 1971 A new look at sedimentation in turbulent streams. J. Boston Soc. Cir. Engrs 58, 
131-163. 

JULIEN, P. Y. & LAN, Y. 1991 Rheology of hyperconcentrations. J. HydrauL Engng Am. Soc. Civ. 
Engrs 117, 346-353. 

Mm, W. C. & PARKER, J. D. 1967 Velocity profile measurements and phenomenological description 
of turbulent fiber suspension pipe flow. Tech. Ass. Pulp Paper Ind. 50, 237-246. 

ROBERTS, C. P. R., KENNEDY, J. F. & IPPEN, A. T. 1967 Particle and fluid velocity of turbulent 
flows of suspensions of neutrally buoyant particles. Technical Report 103, Hydrodynamic Lab., 
MIT, Cambridge, MA. 

ROUSE, H. 1937 Modern conceptions of the mechanics of fluid turbulence. Trans. Am. Soc. Cir. 
Engrs 102, 463-523. 

SAVAGE, S. B. & MCKEOWN, S. 1983 Shear stresses developed during rapid shear of concentrated 
suspensions of large spherical particles between concentric cylinders. J. Fluid Mech. 127, 453-472. 



690 w.c. MIH 

SAVAGE, S. B. & SAYED, M. 1984 Stresses developed by dry cohesionless granular materials sheared 
in an annular shear cell. J. Fluid Mech. 142, 391-430. 

SHEN, H. • ACKERMANN, N. L. 1982 Constitutive relationships for fluid-solid mixtures. J. Engng 
Mech. Am. Soc. Cir. Engrs 108, 748-763. 

SHIBATA, M. & MEI, C. C. 1986 Slow parallel flows of a water-granule mixture under gravity. Acta 
Mech. 63, 195-216. 

TAKAHASHI, T. 1980 Debris flow on prismatic open channel. Jr. Hydraul. Engng Am. Soc. Cir. Engrs 
106, 381-396. 


